2ND ANNUAL REFRIGERATION CONFERENCE 2018

Non-HFC Cold Chain

Food Production

- (Source: Arab Agricultural statistics year book Alpen Capital)
- Due to the scarcity of arable land and an arid climate, agricultural food production in the GCC region has been minimal. According to the FAO, of the total area, the land suitable for cultivation is just 1.7% in Saudi Arabia and 3.0% in the UAE compared to 18.4% in the US, 23.7% in the UK, 16.3% in China and 51.6% in India.

GCC countries largely rely on imports to meet most of their food requirement. They imported as much as 37.2 million metric tons of food in 2007, more than three times the food produced locally.

For Food Safety and extended safe shelf life of food items, Refrigeration is a must from farm to fork

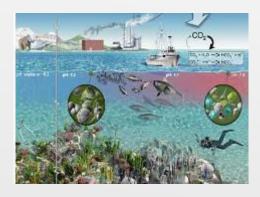
Exhibit 6: Country wise food consumption share within GCC (%)

Country	2011	2013	2015
Saudi Arabia	64.9%	64.5%	64.0%
UAE	18.3%	18.5%	18.9%
Qatar	3.6%	3.7%	3.9%
Oman	6.1%	6.2%	6.3%
Kuwait	5.5%	5.5%	5.4%
Bahrain	1.5%	1.5%	1.5%
GCC Total	100%	100%	100%

- While Refrigeration industry is helping food safety and extending food shelf life in one hand, it adversely affects food security and our environment on the other hand. Environment being atmosphere, land and ocean
- ODP, GWP, TEWI

THE RESULTS

- ✓ Threatening life on our planet ODP
- ✓ Depleting and contaminating water reserves from cooling towers and evaporative condensers highly concentrated bleed.
- \checkmark Melting ice and erosion on land GWP.
- ✓ Sick oceans increasing CO2 level threatening sea food security



RECOMMENDED SOLUTIONS

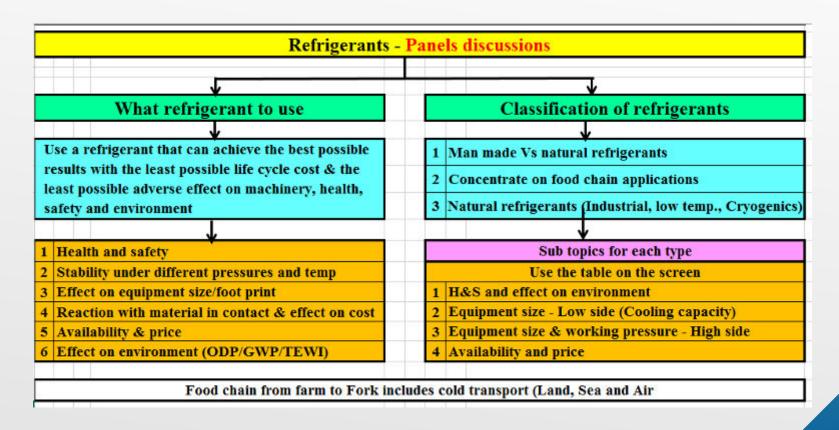
- 1. Phase out CFC & HCFC refrigerants: Assumed almost done.
- 2. Eliminate or reduce the use of HFC refrigerants and replace with Natural refrigerants to minimize the foot print of carbon emission.

Ocean Acidification: The Other CO₂ Problem


Ocean based food security threatened in a high CO₂ world

The burning of fossil fuels not only increases CO_2 in the atmosphere but also in the ocean. As a result, the concentration of hydrogen ions increases (increasing acidity) whilst the concentration of carbonate ions decreases.

Source University of Maryland.



Fish and sea food are a primary source of protein for more than one billion of poorest people on Earth

Technical and financial challenges facing NH3 & CO₂ refrigerants in food industry in GCC countries

Most common SSTs used in food industry in GCC countries

- 1. Dry stores around +2 degrees Celsius
- 2. Chilled products around (-10) degrees Celsius
- 3. Holding freezers and blast freezing applications around (-30) degrees Celsius

Most common SCTs in food industry in GCC countries

- 1. Air cooled condensers around 55 degrees Celsius
- 2. Evaporative condensers around 40 degrees Celsius
- 3. CO₂ requires a condensing temperature not to exceed (15) degrees Celsius

Technical and financial challenges facing NH3 & ${\rm CO_2}$ refrigerants in food industry in GCC countries

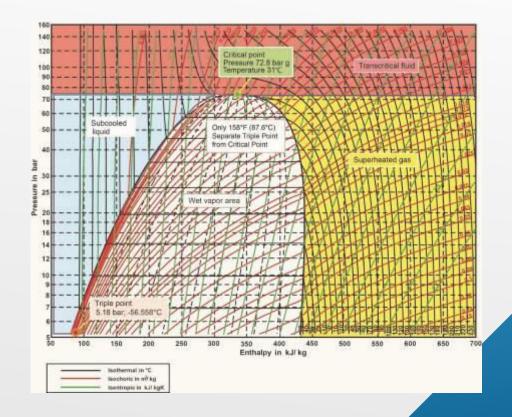
Main Refrigerant properties affecting the technical and financial selection

- 1. Density/specific volume at design conditions
- 2. Working pressure at design conditions
- 3. Latent heat at design conditions
- 4. Safety
- 5. ODP, GWP, TEWI

Sn.		Refrigerant	Press kPa	-	Density kg/Mt ³	L heat kJ/kg	Comments and Clarifications	Affected sy	ze and Cost)			
	Dr	y storage application to	give cl	hilled wa	ter temp	°C - Saturated S	c - Saturated Suction conditions at + 2 oC					
Ma	an Made	Refrigerants			Effect of each of	KJ/Liter	L/S for 100 KW C C Sys	Kg/S for 100 KW C C Sys				
1	R22	ChlorodiFluoromethane - CHClF2	531	0.044	22.60	203	the 4 Variables on equipment and	4.598	21.75	0.49		
2	R134a	TetraFluoroethane - CH2FCF3	315	0.065	15.47	197	material cost	3.048	0.51			
3	R407C	R32/125/134a (23/25/52)	605	0.031	31.94	204	Combined effect	6.515	15.35	0.49		
4	R410A	R-32/125 (50/50)	850	0.029	34.55	219	on C.O.P., ODP,	7.567	13.21	0.46		
5	R404A	R-125/143a/134a (44/52/4)	650	0.026	38.20	160	GWP	6.107	16.38	0.63		
Na	tural Re	frigerants										
6	R717	Ammonia - NH3	462	0.270	3.71	1,255	Figure each KPI	4.655	21.48	0.08		
7	R744	CO ₂	3,673	0.010	104.10	225	(Weightage).	23.423	4.27	0.44		
BH	IP	144/33,000 x (k/k-1)	x P ₁ V ₁	$(P_2/P_1)^{(K)}$	(-1)/K — 1]/((e _a x e _v x	e _m)	Heat	Compressor	Compressor's		
Fo	rmula fo	r Torque at Compress						exchangers	& piping	motor		

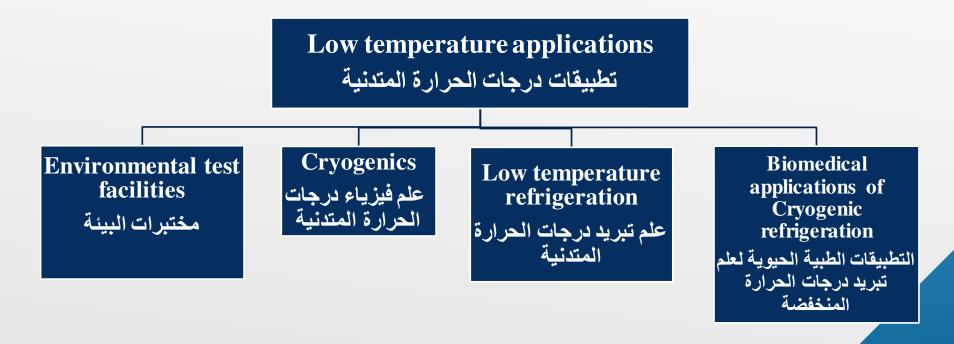
Sn.		Refrigerant	Press kPa		Density kg/Mt ³	L heat kJ/kg	Comments and Clarifications	Affected s	ystem parts (Si	Size and Cost)	
	Chille	ed storage application (to give I		10°C - Saturated	Suction co	onditions at	-10 oC			
Ma	n Made	Refrigerants			Effect of each of	KJ/Liter	L/S for 100 KW C C Sys	Kg/S for 100 KW C C Sys			
1	R22	ChlorodiFluoromethane - CHClF2	355	0.065	15.32	213	the 4 Variables on equipment and	3.263	30.65	0.47	
2	R134a	TetraFluoroethane - CH2FCF3	201	0.1	10.04	206	material cost	2.068	48.35	0.49	
3	R407C	R32/125/134a (23/25/52)	400	0.058	17.16	221	Combined effect	3.792	26.37	0.45	
4	R410A	R-32/125 (50/50)	550	0.047	21.07	234	on C.O.P., ODP,	4.930	20.28	0.43	
5	R404A	R-125/143a/134a (44/52/4)	440	0.045	22.36	174	GWP	3.891	25.70	0.57	
Na	tural Re	frigerants					Element IVDI				
6	R717	Ammonia - NH3	291	0.418	2.39	1,297	Figure each KPI	3.100	32.26	0.08	
7	R744	CO ₂	2,649	0.014	71.17	259	(Weightage).	18.433	5.43	0.39	
ВН	IP	144/33,000 x (k/k-1)	x P ₁ V ₁	$(P_2/P_1)^{(K)}$	(-1)/K — 1]/(e _a x e _v x	e _m)	Heat	Compressor	Compressor's	
Fo	rmula fo	r Torque at Compress	or Shaf	t: T = 52	50 x bhp	/ rpm		exchangers	& piping	motor	

Sn.		Refrigerant	Press kPa		Density kg/Mt ³	L heat kJ/kg	Comments and Clarifications	Affected s	ystem parts (Si	(Size and Cost)	
Hol	lding and	l blast freezing applica	tion to s	give Roo	m temp b	-20 & -25 °C - Saturated Suction conditions at					
Ma	an Made	Refrigerants			Effect of each of the 4 Variables on	KJ/Liter	L/S for 100 KW C C Sys	Kg/S for 100 KW C C Sys			
1	R22	ChlorodiFluoromethane - CHClF2	164	0.136	7.38	227	equipment and	1.675	59.69	0.44	
2	R134a	TetraFluoroethane - CH2FCF3	84	0.226	4.43	220	material cost. See R-134a pres.	0.975	102.61	0.45	
3	R407C	R32/125/134a (23/25/52)	180	0.125	7.97	238	Combined effect	1.897	52.72	0.42	
4	R410A	R-32/125 (50/50)	260	0.098	10.2	253	on C.O.P., ODP,	2.581	38.75	0.40	
5	R404A	R-125/143a/134a (44/52/4)	200	0.096	10.44	190	GWP	1.984	50.41	0.53	
Na	tural Re	frigerants					Di1 IZDI				
6	R717	Ammonia - NH3	119	0.964	1.04	1,360	Figure each KPI	1.414	70.70	0.07	
7	R744	CO ₂	1,428	0.027	37.09	303	(Weightage).	11.238	8.90	0.33	
BH	IP	144/33,000 x (k/k-1)	$\mathbf{x} \overline{\mathbf{P_1 V_1}}$	$(P_2/P_1)^{(K)}$	$(-1)^{K} - 1]/($	(e _a x e _v x	e _m)	Heat	Compressor	Compressor's	
Fo	rmula fo	r Torque at Compress	or Shaf	t: T = 52	50 x bhp	/ rpm		exchangers	& piping	motor	


Sn.		Refrigerant	Press Sp Vol Density L heat Comments and KPa Mt³/kg kg/Mt³ kJ/kg Clarifications					Affected system parts (Size and Cost)					
	Air coo	led Condensers at Aml	oient te	mperatui	ratedSaturated	condensin	g temperatu	re 55°C					
Ma	n Made	Refrigerants			Effect of each of the 4 Variables on	KJ/Liter	L/S for 100 KW C C Sys	Kg/S for 100 KW C C Sys					
1	R22	ChlorodiFluoromethane - CHClF2	2224	0.01	100.503	145.9	equipment and material cost. See	14.663	6.82	0.69			
2	R134a	TetraFluoroethane - CH2FCF3	1528	0.0128	78.2473	144.41	R-134a pres.	11.300	8.85	0.69			
3	R407C	R32/125/134a (23/25/52)	2500	0.0083	120.919	139.46	Combined effect on	16.863	5.93	0.72			
4	R410A	R-32/125 (50/50)	3600	0.0056	180.18	115.34	C.O.P., ODP,	20.782	4.81	0.87			
5	R404A	R-125/143a/134a (44/52/4)	2600	0.006	165.563	92.65	GWP	15.339	6.52	1.08			
Na	tural Re	frigerants					Figure each KPI						
6	R717	Ammonia - NH3	2311	0.056	18.005	1024	(Weightage).	18.446	5.42	0.10			
7	R744	CO ₂				Not	applicable. Above	Critical poin	ıt				
BH	BHP 144/33,000 x (k/k-1) x $P_1V_1 [(P_2/P_1)^{(K-1)/K} - 1]/(e_a \times e_v \times e_v$						e _m)	Heat	Compressor	Compressor's			
Fo	rmula fo	r Torque at Compress	or Shaf	t: T = 52	50 x bhp		exchangers	& piping	motor				

Sn.		Refrigerant		_	Density kg/Mt ³		Comments and Clarifications	Affected system parts (Size and Cost)					
	Air coo	led Condensers at Aml			ratedSaturated	condensin	g temperatu	ıre 40°C					
Ma	n Made	Refrigerants			Effect of each of the 4 Variables on	KJ/Liter	L/S for 100 KW C C Sys	Kg/S for 100 KW C C Sys					
1	R22	ChlorodiFluoromethane - CHClF2	1554	0.015	66.181	166.6	equipment and	11.026	9.07	0.60			
2	R134a	TetraFluoroethane - CH2FCF3	1017	0.02	50.075	163	material cost. See R-134a pres.	8.163	12.25	0.61			
3	R407C	R32/125/134a (23/25/52)	1800	0.012	81.235	162.8	Combined effect	13.228	7.56	0.61			
4	R410A	R-32/125 (50/50)	2400	0.01	102.25	159.8	on C.O.P., ODP,	16.340	6.12	0.63			
5	R404A	R-125/143a/134a (44/52/4)	1900	0.009	111.1	117.9	GWP	13.095	7.64	0.85			
Na	tural Re	frigerants					Figure each KPI						
6	R717	Ammonia - NH3	1555	0.083	12.034	1099	(Weightage).	13.228	7.56	0.09			
7	R744	CO ₂				Not	applicable. Above	Critical poin	ıt				
BH		144/33,000 x (k/k-1)		/		e _m)	Heat	Compressor	Compressor's				
Fo	rmula fo	r Torque at Compress	or Shaf	t: T = 52	50 x bhp		exchangers	& piping	motor				

Technical and financial challenges facing NH3 & ${\rm CO_2}$ refrigerants in food industry in GCC countries


Pressure Enthalpy Chart for CO₂. Watch the critical point and the Triple point

CO₂ application in GCC states requires Cascade system with medium stage side load at SST suitable for CO₂ SCT for optimum VE

Cryogenics. Definitions (Low temp. is a relative term)

- 1. In Air conditioning, approaching zero degrees Celsius is considered low temp.
- 2. In industrial refrigeration, (-50) degrees Celsius is considered low temp.
- 3. In Cryogenics, zero degrees Kelvin (-273) degree Celsius is considered low temp.

Cryogenics. Definitions (Low temp. is a relative term)

- 1. In Air conditioning, approaching zero degrees Celsius is considered low temp.
- 2. In industrial refrigeration, (-50) degrees Celsius is considered low temp.
- 3. In Cryogenics, zero degrees Kelvin (-273) degree Celsius is considered low temp.

		Ref	rigerant	Cryogenics - low Temp. Application											
Sn	Je	es.	Chemical Name	Saturated suction conditions											
	Name	Sour	or Composition	Pre	ssure kl	Pa & Te	emp °C	Spec.	. Vol.	Den	sity	Laten	t heat		
	Z	Š	(% by Mass).	P1	T1	P2	T2	S.V.1	S.V.2	Den. 1	Den. 2	kJ	/kg		
1	R-702		Normal Hydrogen	8	-259	90	-253	7.29	0.835	0.14	1.2	449	447		
2	R-702 P		Parahydrgen	7	-259	93	-253	7.84	0.804	0.13	1.24	447	445		
3	R-704	efrigerant	Helium	5	-271	47	-270	0.87	0.125	1.15	8.02	23	23		
4	R-728	g	Nitrogen	13	-210	137	-193	1.48	0.164	0.67	6.11	215	195		
5	R-729	efri	Air	6	-213	150	-191	2.92	0.155	0.34	6.47	226	201		
6	R-732	I R	Oxygen	0.2	-219	254	-173	96.5	0.096	0.01	10.43	243	202		
7	R-740	E E	Natural	Argon	69	-189	324	-173	0.25	0.059	4.06	16.91	164	150	
8	R-299	Nat	Propane	0	-150		""	4341	""	0	"""	526	""""		
9	R404A		Carbon Dioxide	518	-56.6	"""	"""	0.07	"""	13.76	"""	350	167		
10	R717		Ammonia - NH3	6	-77.7	"""	"""	15.6	"""	0.06	"""	1,484	""""		
			Ref	. ASH	RAE (F	undame	ntal Ha	ndbook)						

Cryogenics – General applications

- The food industry uses large amounts of liquid nitrogen to freeze the more expensive foods like shrimp and to maintain frozen food during transport.
- Liquid nitrogen cooled containers are used to preserve whole blood, bone marrow, and animal semen for extended periods.
- Cryogenic surgery is performed to cure such involuntary disorders as Parkinson's disease.
- Medical diagnosis uses magnetic resonance imaging (MRI), which requires cryogenically cooled superconducting magnets

Cryogenics – General applications

Finally, the **chemical processing industry** relies on cryogenic temperatures to recover the more valuable heavy components or upgrade the heat content of the **fuel gas from natural gas**, to recover useful components like **argon and neon from air,** to purify various process and waste streams, and to produce **ethylene** from a mixture of **olefin** compounds. An **alkene**, **olefin**, or **olefine** is an unsaturated chemical compound containing at least one carbon-to-carbon double bond. General formula C_nH_{2n} . **Ethylene** C_2H_4

Thank you