

Danfoss

2nd EDITION REFRIGERATION CONFERENCE 2018 Bahrain 25. April 2018 Carsten Dahlgaard

Carsten Dahlgaard

Danfoss A/S. Denmark

Main areas of work:

 Senior Director Sales Europe, Middle East and Africa

Education:

- Masters degree (Marine Engineering)
- Primary Education Engineering Materials

Work experience:

- 18 years in Danfoss out of 27 years within Refrigeration
- Branch Manager for IR Contractor
- Senior Director Sales Asia
- Global Marketing Director
- Sale Manager for Industrial Refrigeration (IR) and Original Equipment Manufacturers (OEM)
- Sales Engineer
- Technical Service Support
- Installation Manager for Refrigeration Contractor
- Marine Engineer

Danfoss engineers technologies that enable the world of tomorrow to do more with less. We meet the growing need for infrastructure, food supply, energy efficiency and climate-friendly solutions

Mr. Mads Clausen established a company and named it Danfoss.

Business segments

DANFOSS POWER SOLUTIONS

Market position

32% of Group net sales

- 6,815 employees
- 22 factories in 11 countries
- 2.3bn USD

DANFOSS COOLING

Market position

- · 6,396 employees
- 13 factories in 10 countries
- 1.9bn USD

DANFOSS DRIVES

Market position

- 4,652 employees
- **11 factories** in 7 countries
- **1.7**bn USD

DANFOSS HEATING

Market position

- 5,339 employees
- 26 factories in 12 countries
- 1.2bn USD

Industrial Refrigeration

Innovation highlights 2004-2018

The Formula for Efficiency

Danfoss ICFD Defrost Module

Stainless Steel

The ICF Portfolio

Focus is to continually develop our offering to meet customer and market needs and continue the journey from conventional valves and transfer to ICF valve stations.

Stainless Steel

New opportunities

SVA-FIA-ICS-NRVA-REG-SVA

Hot gas defrost by pressure control

Air cooler without the **ICF Valve Station**

A conventional system with numerous individual valves:

 Installation requires disassembly and re-assembly prior to welding

Hot gas defrost by liquid drain

Air cooler with the **ICF Valve Station**

ICF Valve Stations across the wet suction, liquid, hot gas, and defrost drain lines BSV Uniting simplified efficiency and reduced SNV energy consumption ICF65-3-41 'Wet" return line CHV 6 ICF20-4-102D1 SNV Liquid line ICF25-6-3RA (pump) Hot gas line ICF50-4-43MA

Air cooler performance vs. ice build-up on surface

Pressure Controlled vs Liquid Drain

Pressure Controlled

 Increasing amount of gas is bypassed as defrost progresses

bypass Gas "Evaporator as condenser"

Liquid Drain

 Float valve just returns liquid to separator

...minor gas bypass necessary though bleed

Mass flow

Liquid drain method vs. Pressure control method

Defrost test

- Laboratory tests / measurements at DTI
- Defrost simulation tool
- Test on Industry applications
- Literature study

Laboratory defrost test

Laboratory defrost test shows significant saving potential on a new "modern" air-cooler, with Liquid Drain defrost vs. Pressure Controlled defrost

> TEKNOLOGISK INSTITUT

Defrost energy - Pressure Control vs. Liquid Drain

Compressor work during defrost - Pressure Control vs Liquid Drain Defrost of 25% evaporator capacity

Roof mounted valve station (Liquid Drain -ICF) Gas by-pass orifice

Regulated hot gas pressure

- Defrost temperature ~ 10 C (50 F) is generally an efficient defrost temperature.
- Hotgas supply pressure depends on the pressure drop in the supply system, but a "rule of thumb" state ~1 bar(15 psi) across the hotgas solenoid.
- "Regulated" hot gas is recommended (pressure my increase in evaporator to higher level than for Pressure Control method); regulated by a back pressure control valve.
- "Regulated" hot gas is good design practice, and support high safety level.

Measured mass flow, Raitan Horsens. Thin lines, defrost drain method. Thick lines, pressure control method

Compressor energy savings

Customer Benefit (end-user)

- Reduction of blow-by gas by up to 90%
- Eliminates need to re-compress blow-by gas
- Less loading of compressors
- Reduce hot gas consumption

Customer Value (end-user)

Reduced energy consumsion

Assumptions:

Evaporator: 41 kW @ -25C (12 TR, @ -13□F)

Defrost 40 min. Once a day Savings:12.6 kWh pr defrost

Industry current rate: EU 28 countries 2017:0.17 USD Danish Energy Ministry: https://ens.dk/service/statistik-

data-noegletal-og-kort/priser-paa-el-og-gas

Calculation:

Evaporator/year: 12.6 x 0.17 x360

782 USD Per Evaporator/Year

(650 EUR)

Customer Value

Danfoss IRF Coolselector®2

- Provides complete valve and piping calculation and selection
- Offers specific sales/order codes
- Consult Danfoss Industrial Refrigeration experts for advice on how to optimize the defrost cycle based on the system conditions in question
- Easy download and installation
- ICFD released August 31st

Coolselector2

Project information

Project name: Comments: Created by: Niels Vestergaard Coolselector2 version: 2.1.2. Database: 22.2 Printed:

29. November 2017 Preferences used: Industrial applications

Evaporator valve station 1

Coolselector2

Project name:

Evaporator valve station 1 - Liquid feed line

Operating conditions (synchronic	zed acro	oss app	lication)	
Refrigerant:	R717		Cooling capacity:	
Mass flow in line:	833,9	kg/h	Heating capacity:	
Evaporating temperature:	-10,0	°C	Condensing temperature	
Evaporating pressure:	2,914	bar	Condensing pressure:	
Superheat before compressor:	0	K	Subcooling:	
Circulation rate:	3,00	-	Additional subcooling:	
DP pump:	2,000	bar	Discharge temperature:	
System and line:	Pump - Liquid feed line Size: DIN-EN Butt weld / DIN-EN 20 (3/4")			
Initial line connection type and size:				
			_	

Line total			
Pressure drop	0,628	bar	
Saturation temperature drop	3,7	K	

Position 1. ICF-20-6-20D DIN-EN Butt weld DN 20

Type codetCF-20-6-20DSXFXEXOXRANX62XX Type string: ICF 20-6-2RA Code number: 027L3009 Pressure drop 0,628 Saturation temperature drop 3,7

Position 1. House in

Pressure drop	0,005	bar
Saturation temperature drop	0,0	K
Velocity, in	0,91	m/s

Position 1. Stop valve: ICFS 20 m

Pressure drop 0,008 bar Saturation temperature drop 0,0 K Velocity, in 0,91 m/s Velocity, out 0,91 m/s

Coolselector®2

Version 2.1.2	Database	22.22.1.9.5

Comments:	
Created by:	Niels Vestergaard
District.	00 November 2017

29. November 2017 Preferences used: Industrial applications

	Quantity	Product Description	Code number	Type Code	Sales Price
		Evaporator valve station 1			
		Liquid feed line			
	1	ICF-20-6-20D DIN-EN Butt w eld DN 20. M1: Stop. M2: Filter. M3: Solenoid. M4: Manual. M5: Control. M6: Check	027L3009	ICF-20-6-20DSXFXEXOXRANX62XX	
		Wet return line			
	1	ICF-50-4-50D DIN-EN Butt w eld DN 50. M1: Stop. M2: Blank. M3: Solenoid. M4: Stop	027L5023	ICF-50-4-50DSXBXIXSXXXXX2JXX	
	1	Welding connection for ICF side port			
X		Hot gas defrost line			
A	1	ICF-25-4-32D DIN-EN Butt w eld DN 32. M1: Stop. M2: Filter. M3: Solenoid. M4: Stop	027L4067	ICF-25-4-32DSXFXEHSXXXXX49XX	
9		Defrost drain line			
7	1	ICF-15-4-20D DIN-EN Butt w eld DN 20. M1: Stop. M2: Filter. M3: Solenoid. M4: Float EV	027L4589	ICF-15-4-20DSYFYEXD1XXXX24AX	
K					
	l				

TREND IN TECHNOLOGIES WITHIN INDUSTRIAL REFRIGERATION

2nd EDITION REFRIGERATION CONFERENCE 2018

Bahrain 25. April 2018

Carsten Dahlgaard

Driving forces of Large Refrigeration System

Industrial Refrigeration

Industry Drivers

Cost

 primary growth in emerging markets with higher price pressure, TCO awareness

Safety

Safety

Reliability

 products and system design

Reliability

Automatic running

Global warming

 refrigerants focus, plays along with NH3 and CO2

Energy efficiency

Cost

Global

warming

Energy efficiency

- new and retrofit systems
- Industriel heat pumps

Refrigerant Map - outlook

Industrial Refrigeration

Industry Drivers

Offsite risk mitigation by charge reduction / segmentation

Ammonia charge in large industrial refrigeration systems

Specific NH3 charge in large industrial refrigeration systems

Reduced charge = Reduced Risk

Example: Cold Store 2300 kW

Ammonia Ceiling Coil system \Leftrightarrow Ammonia DX system with Aluminum Air Coolers

Type of evaporators	Ammonia charge (kg)	Ammonia charge (kg /kW)	Charge reduction (%)	
U bend ceiling coil (OD,38mm; ID, 32mm)	59869	26	94%	
Aluminum DX Air coolers	3680	1.6	94%	

Industrial Refrigeration

Industry Drivers

New upcoming "Low Charge" solutions

Charge reduction without compromising efficiency

Impact on efficiency by concepts

Specific refrigerant charge [kg refrigerant / kW cooling]

Super low charged ammonia system for cold storages

Mitigating risks

Though not entirely new, advancements in evaporator design and liquid feed control open the door to NH3 systems offering

- No need for an engine room
- Roof-top based design
- "VLC" very low NH3 charge
- Claimed to have up to 98% less ammonia than regular systems (lowest charge < 100 g / kW)
- Fully automated self-contained NH3 system
- Very fast installation

Source: 1) http://www.foodengineeringmag.com/articles/92191-making-ammonia-safer-and-more-efficient-in-refrigeration-applications 2) http://www.ammonia21.com/web/assets/companybrochure/file/533 azanefreezer uk.pdf

Super low charged ammonia system for cold storages New upcoming trend in USA

Example:

Cold storages with 6 self-contained

NH3 "penthouse units"

6 x 100 kg ammonia

6 x 250 kW cooling capacity

ChillPAC MK3

Better performance, less vibration, less charge, easy service

- Compact design, small footprint, door size
- Capacity: 150 1400 kW (Water inlet 12°C, water outlet: 7°C
- Flooded evaporator with integrated liquid separator
- Low refrigerant (ammonia) charge: 40 kg / 1000 kW cooling
- HP-side design pressure: 28 bar (suitable as lukevarm heat pump)

Low Charge Central System

- No liquid refrigerant in engine room
- No liquid "distribution lines"
- All "distribution lines" dry gas
- Specific charge: 1.5-3 lbm/TR (0,5-1 kg/kW)

dry vapor mains serving multiple evaporator loads at differing suction conditions.

No liquid refrigerant is in the engine room. Ideal for blast freezing.

Ammonia low charge systems

Ammonia pump circulating system with regulated circulation rate

Condenser Evaporator(s) NH₃ receiver

Ammonia "**DX"-system** with hot gas defrost & suction accumulator

Potential: Charge reduction by regulated liquid circulation

NH3 charge in a 1380 kW Cold Store

Example based on:

Cold Store: 580 kW freezing @ -35 °C and 800 kW cooling @ -5 °C total 1380 kW

14 evaporators @ -35 °C and 22 evaporators @ -5 °C

Ammonia vs. CO2/Ammonia and Glycol systems

CO2 <-> Secondary cooling systems *Heat-Transfer*

Efficiency Factor

The Heat-Transfer Efficiency Factor expresses the relation between the heat-transfer coefficient and the necessary pump power to overcome frictional pressure losses.

CO₂ as a brine

Calculation example: Energy consumption

		CO ₂	Propylen Glycol	CO ₂	Hycool
Air temperature	[°C]	0	0	-20	-20
Cooling capacity	[kW]	500	500	500	500
Evaporating temp	[°C]	-7,0	-9,5	-28,0	-32,0
Additional heat gains,	[%]	7%	10%	9%	12%
Additional heat gains,	[kW]	35	50	45	60
Pump power	[kW]	1	14	1	16
Cooling capacity adjusted	[kW]	536	564	546	576
Compressor power	[kW]	130	140	251	306
Pump power	[kW]	1	14	1	16
Total install	[kW]	131	154	252	322
Total energy difference (CO ₂ vs. glycol)	[%]	15%		22%	

Comparison of ammonia vs. CO₂ systems

Pre-conditions

- Dimensioning capacity: 1000 kW @ -10 °C & 1000 kW @ 40 °C
- Floating condensing temperature: TC_{min} = 15 °C for R717 & 10 °C for CO₂

Ammonia two stage open intercooler

- HT: SAB 283 S VSD
- IT: SAB 283 F male drive
- Control system: Flooded evaporators

CO₂ + Ammonia two stage cascade

- HT: SAB 283 S VSD
- LT: HPC 108 S Rotatune
- Control system: Flooded evaporators & temperature difference in cascade cooler: 5 K

Transcritical CO₂

- Bitzer 4CTC-30K • HT / IT:
- IT: Bitzer 4NSL-30K
- Control system: DX

Calculation based on Pack Calculation Pro ver.4.20

Comparison of ammonia vs. CO₂ systems

Comparison of ammonia vs. CO₂ systems

Industrial Refrigeration

Industry Drivers

Utilize waste heat with Ammonia Heat pumps

Slaughter-

houses

Breweries

Ammonia - high temperature

• Pressure: up to 65 bar

Dairies

• COP: up to 5 or higher as add-on

• Temperature range: water up to 95°C

 Applications: food processing, process technologies and district heating

Ice Rinks

Capacity range: ~200 kW -> 30+ MW

Poultry

District

Heating

Benefit of implementing effective control systems

Servo operated valves vs. motorized valves

- Servo operated valves requires 0.2 bar for 100% opening, and min 0.05 bar
- Example: An additional pressure drop at e.g. 0.05 bar in a suction line of an Ammonia system with an evaporating temperature at -40 Deg. C correspond to a temperature drop on approx. 1.5 K.

Ammonia. (TE -40 to -20 Deg. C / TC +30 Deg. C)

Industrial Refrigeration

Industry Drivers

Danfoss Flexline™ Commonalities Across ICV, ICF And SVL

- Platform based concept offering a lot of benefits such as
 - Clever simplicity
 - Advanced flexibility
 - Timesaving efficiency
- All products are designed for Ammonia and CO₂
- Standard approval for 52 bar (65 bar on request)

ICV Flexline ™ Control valve

ICF Flexline ™ ⁻ Complete valve stations

SVL Flexline TM - Line components

"State of the art" Cold Store application

Coolselector®2

- Provides complete valve and piping calculation and selection
- Provides application selection (complete evaporator station selection)
- Offers specific sales/order codes
- Easy download and installation

Fast and easy selection

Industrial Refrigeration

Industry Drivers

Cost

Total cost of ownership for complete system

Conclusion

- >The ammonia industry has a long history with more than 100 years of experince.
- ➤Today's challenges:
 - Ammonia is still the preferred refrigerant for industrial applications
 - Safety is a topic, that has to be treated professional
 - Low charge ammonia systems is an obvious solution
 - Low charge solutions can be obtained by:
 - Re-design traditional pump-systems
 - Combining ammonia and CO₂
 - Transcritical CO2
 - Increase energy efficiency

ENGINEERING TOMORROW